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We use a semiclassical expansion as an alternative derivation of the well-known, rigorous result obtained by
Hepp and Lieb for the classical limit of the spin-boson model. We also explicitly derive correction terms to the
classical limit previously obtained in the context of Heisenberg equations of motion. We analyze the size and
shape of the N �number of atoms� vs t �time� domain whithin which the corrections so obtained are useful.

DOI: 10.1103/PhysRevE.78.036220 PACS number�s�: 05.45.�a, 03.65.Sq, 03.65.Fd, 42.50.�p

I. INTRODUCTION

The spin-boson model �1� is a paradigm in several areas
of physics such as statistical mechanics �2–4�, condensed
matter physics �5,6�, quantum optics �7–11�, and more re-
cently the theory of decoherence �12–14� and quantum chaos
�15–17�. Also, on a more formal side, the model belongs to a
class of models called mean field models for which the clas-
sical limit is mathematically well defined. The first proof of
its classical limit, given by Hepp and Lieb �18,19� and later
complemented and clarified in �20�, was given in the frame-
work of Heisenberg equations of motion.

The purpose of the present contribution is to derive that
result in Schrödinger’s picture by means of a semiclassical
expansion of the time-dependent equation. Although not as
rigorous, the semiclassical expansion allows us to calculate
quantum corrections to the classical limit for the expection
values of operators. It has been shown to be convergent in a
specific model in �21�.

The idea behind the semiclassical expansion we use is the
following. The essentially quantum character of the Heisen-
berg equations of motion for operators becomes apparent in
the correlation functions. On the other hand, quantum effects
become apparent in a two-degree-of-freedom system, e.g., in
their entanglement, a property of the state of the system. In
order to perturbatively access the entanglement between the
spin and boson generated by their interaction, we set up the
semiclassical approximation such that its zeroth-order contri-
bution is a product state and contains all ingredients of the
classical dynamics. The corrections carry quantum effects, in
particular, entanglement. We use this expansion to calculate
the same expectation values considered in �18,20� and obtain
quantum corrections to them, shown to be of order N−1 as
expected, N being the number of atoms, a characteristic size
of the spin-boson system.

In Sec. II we review the main results of the derivation in
�18,20�. In Sec. III we derive the semiclassical approxima-
tion, which is a generalization of �21�, now for two degrees
of freedom. Moreover, the expectation values of operators
are obtained to second order in the semiclassical expansion.
Conclusions are given in Sec. IV.

II. THE SPIN-BOSON MODEL AND ITS CLASSICAL
LIMIT

The Hamiltonian of the spin-boson model describing N
two-level atoms subject to an electromagnetic field of fre-
quency � is given �in units of ��� by

HN = �Jz + a†a +
G
�N

�J+ + J−��a + a†� , �1�

where the operators a and a† are the standard bosonic cre-
ation and destruction operators and the real constants � and
G are the ratio between the level transition frequency and the
frequency of the field and the coupling constant, respectively.
The operators J� and Jz are collective mode spin operators
�1� obtained as follows:

Jx,y,z = �
j=1

N

Jx,y,z
j ,

J+,−,z
j = 1 � 1 � ¯ � 1 � �+,−,z

j
� 1 � ¯ � 1, �2�

where �+,−,z are Pauli matrices.
The classical limit of the model is obtained with the fol-

lowing “intensive” operators:

J̃+,−,z =
J+,−,z

N
, ã =

a
�N

, ã† =
a†

�N
. �3�

By means of standard commutation relations with the Hamil-
tonian in Eq. �1�, it is easy to get equations of motion for
these operators:

J̇̃+ = i��J̃+ − 2GJ̃z�ã + ã†�� , �4�

J̇̃− = − i��J̃− − 2GJ̃z�ã + ã†�� , �5�

J̇̃z = − iG�J̃+ − J̃−��ã + ã†� , �6�

ȧ̃ = − i�ã + G�J̃+ + J̃−�� , �7�
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ȧ̃† = i�ã† + G�J̃+ + J̃−�� . �8�

One of these operators, describing the density of photons
ã†ã, was used by Wang and Hioe �2� to describe the phase
transition of the model in the thermodynamic limit.

Another important concept in the description of the clas-
sical limit of Hepp and Lieb is that of a “classical state.” Let
�AN

i �i=1
5 represent the intensive operators defined above. For a

given density operator �N acting on the Hilbert space of HN,
suppose we can take the limit

lim
N→�

Tr��NAN
i � = 	i �9�

for a complex number 	i. This density operator �N represents
a classical state with respect to the intensive operators �AN

i �
with value 	i if, in addition to the existence of the above
limit, we also have

lim
N→�

Tr��N�AN
i − 	i�†�AN

i − 	i�� = 0. �10�

Equation �10� says that the variance of an intensive operator
should vanish in the limit N→�. Generalized coherent states
�22� are examples of realizable classical states and they will
be in fact the main subject of this paper. Coherent states of
the harmonic oscillator were used by Glauber in the descrip-
tion of the radiation field �23�. For this case—the harmonic
oscillator or h4 algebra—the coherent states are eigenvectors
of the bosonic destruction operator a and they are labeled by
their eigenvalue, that is, for a coherent state 	x
 we have

a	x
 = x	x
 , �11�

where x is a complex number. Field coherent states are ob-
tainable through the action of the displacement operator

D�x� � exp�xa† − x*a� �12�

on the vacuum Fock state 	0
,

	x
 = D�x�	0
 . �13�

Atomic coherent states were introduced by Agarwal �24�.
They are obtainable with the action of an “atomic” displace-
ment operator

D�y� � exp� arctan	y	
y

�yJ+ − y*J−�
 �14�

on an extremal state of the Jz basis,

	y
 = D�y�	j, � j
 . �15�

The 	j ,−j
 state is the usual choice and will also be ours.
As in the harmonic oscillator case, the label y is a complex
number. Here, however, the label is not an eigenvalue. To see
how coherent states can represent a member of the class of
classical states, consider the state given by a product of co-
herent states,

		,y
 � D��Nx� � D�y�	0
	j,− j
 . �16�

By the action of the displacement operators on the opera-
tors of their respective algebra and using N=2j, it is easy to
obtain

�	,y	ã		,y
 = x , �17�

�	,y	ã†		,y
 = x*, �18�

�	,y	J̃+		,y
 =
y*

1 + 	y	2
� �J̃+
 , �19�

�	,y	J̃−		,y
 =
y

1 + 	y	2
� �J̃−
 , �20�

�	,y	J̃z		,y
 = −
1

2
�1 − 	y	2

1 + 	y	2
 � �J̃z
 . �21�

Equations �17�–�21� just show that the limit on �9� is well
defined for the state �N= 	�Nx ,y
��Nx ,y	. We can also check
that this state satisfies condition �10�. For the field degree of
freedom we have

D†��Nx�ãD��Nx� = ã + x , �22�

so the variance of this operator goes to zero trivially. For the
atomic degree of freedom we may write after some algebra

�y	�J̃z − �J̃z
�†�J̃z − �J̃z
�	y
 =
1

N

	y	2

1 + 	y	2
, �23�

�y	�J̃+ − �J̃+
�†�J̃+ − �J̃+
�	y
 =
1

N

	y	4

�1 + 	y	2�2 , �24�

�y	�J̃− − �J̃−
�†�J̃− − �J̃−
�	y
 =
1

N

	y	4

�1 + 	y	2�2 . �25�

That is, the variance goes to zero when N→�.
Up to this point we have just stated important definitions

and showed a concrete example of a classical state. We may
now state the theorem by Hepp and Lieb �18�.

If �N is classical with respect to �ã , ã† , J̃z , J̃+ , J̃−� at the

point r�= ��ã
 , �ã†
 , �J̃z
 , �J̃+
 , �J̃−
�, the state evolved accord-
ing to the Hamiltonian �1�, �N�t�=e−iHt�N�0�eiHt, will also be
classical at the point r��t�
= ��ã
�t� , �ã†
�t� , �J̃z
�t� , �J̃+
�t� , �J̃−
�t��, and the evolution of
r��t� is given by the equations

�J̇̃
+ = i���J̃+
 − 2G�J̃z
��ã
 + �ã†
�� , �26�

�J̇̃−
 = − i���J̃−
 − 2G�J̃z
��ã
 + �ã†
�� , �27�

�J̇̃z
 = − iG��J̃+
 − �J̃−
���ã
 + �ã†�
 , �28�

�ȧ̃
 = − i��ã
 + G��J̃+
 + �J̃−
�� , �29�

�ȧ̃†
 = i��ã†
 + G��J̃+
 + �J̃−
�� . �30�
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III. A SEMICLASSICAL APPROXIMATION IN THE SPIN-
BOSON MODEL

The classical counterpart H of the quantum Hamiltonian
is defined by a projection of H in coherent states, that is, for
this two-degree-of-freedom model,

HN � �x,y	HN	x,y
 = − N
�

2
�1 − 	y	2

1 + 	y	2
 + 	x	2

+
NG�y + y*��x + x*�

�N�1 + 	y	2�
, �31�

where 	x ,y
�	x
 � 	y
 is a direct product of coherent states
and x and y represent the two labels of the first and second
degrees of freedom. H�x ,y� generates a classical dynamics
for the two labels x and y. This classical dynamics will have
the following equations of motion for the labels:

dx

dt
= − i

�HN

�x*
= − i�x +

NG�y + y*�
�N�1 + 	y	2�


 , �32�

dy

dt
= − i

�1 + 	y	2�2

N

�HN

�y*
= − i��y +

G�1 − y2��x + x*�
�N


 ,

�33�

dx*

dt
= i

�HN

�x
= i�x* +

NG�y + y*�
�N�1 + 	y	2�


 , �34�

dy*

dt
= i

�1 + 	y	2�2

N

�HN

�y
= i��y* +

G�1 − y*2��x + x*�
�N


 .

�35�

The dynamics corresponding to the Hamiltonian HN��Nx ,y�
is equivalent to that of H1�x ,y�

To calculate the corrections in the classical limit of the
spin-boson model, we will set up a semiclassical approxima-
tion and try to build quantum dynamics through classical
ingredients. The semiclassical approximation is constructed
as follows. We choose HN

sc such that

HN = �x,y	HN
sc	x,y
 �36�

and the time evolution under HN
sc does not change the char-

acter of a state which is initially a product of coherent states.
Also, the evolution of the state, apart from a global phase, is
given by the evolution of the labels as in Eqs. �32� and �35�.
The semiclassical expansion is now defined in terms of these
ingredients. Consider HN=HN

sc+
, where 
=HN−HN
sc can be

treated as a perturbation. Use the interaction picture to obtain

	�I�t�
 = �1 − i�
0

t

dt1
�t1� − �
0

t �
0

t1

dt1dt2
�t1�
�t2� + ¯ 

�	x0,y0
 , �37�

where 
�t�=UN
sc†�t�
UN

sc�t�, 	x0 ,y0
 is a product of coherent
states with labels x0 and y0, and UN

sc�t� satisfies

U̇N
sc�t� = −

i

�
HN

scUN
sc�t� . �38�

Notice that the zeroth order of the expansion contains all
elements of the classical dynamics and is therefore “as clas-
sical as possible” in the sense that entanglement between the
field and atom degrees of freedom is contained in the correc-
tion terms.

For this particular model, the semiclassical Hamiltonian
can be defined as

HN
sc = a†a + �Jz +

G
�N

��a† − x*��J−
 + �a − x��J+
 + x*J−

+ xJ+� +
G
�N

��a† − x*��J+
 + �a − x��J−
 + x*J+ + xJ−� ,

�39�

where �J�
= �y	J�	y
, the mean value of J� in the atomic
coherent state with label y, and x= �x	a	x
 is the mean value
of the operator a in the electromagnetic field coherent state
with label x. UN

sc is easily seen to be given by

UN
sc�t� = D1�x�exp�i��t�a†a + 
�t��D1

−1�x0�

� D2�y�exp�i��t�Jz�D2
−1�y0� , �40�

where x0 and y0 are the labels of the initial coherent states, x
and y are given by the classical trajectories through H�x ,y�,
and we can find the temporal dependence of the remaining
parameters � ,� ,
 by substituting �40� in �38�. We get

��t� = − t , �41�

�̇ = − � +
G

�2j
�xy* + x*y� +

G
�2j

�x*y* + xy� , �42�


̇ =
j�G�xy* + x*y� + G�xy + x*y*��

�2j�1 + 	y	2�
. �43�

To first order in 
 we get for Dicke’s model

	�I�t�
 =
	x0,y0
 + c11�t�	x1,y1


�1 + 	c11�t�	2�1/2 , �44�

where 	x1 ,y1
 are generalized coherent states obtained by the
action of the displacement operator on the corresponding
first excited states: 	x1 ,y1
=D1�x0� � D2�y0�	1; j ,−j+1
. The
coefficient c11 is independent of N and it is obtained from the
equation

ċ11�t� = − i
G�1 − y2�t��

�2j�1 + 	y�t�	2�
exp�i�t − ��t��� . �45�

Note that the quantum correction is given in terms of classi-
cal trajectories and a phase containing the classical action.
Now, at second order, we can use
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	�I�t�
�n� = �
0

t

d� 
���	�I���
�n−1�, �46�

where 	�I�t�
�n� stands for the nth-order correction. 	�I�t�
 is
always of the form

	�I�t�
 = A−1��1 + c00�	x0,y0
 + �
�k+l��1

ckl�t�	xk,yl

 ,

�47�

where we have 	xk ,yl
=D�x� � D�y�	k , l
. Up to second order
we have

ċ00�t� =
− ic11�t�G�1 − y�t�*2�e−it+i��t�

�1 + 	y�t�	2�
, �48�

ċ01�t� =
ic11�t�2G�y�t�* + y�t��e−it

��N�1 + 	y�t�	2��
, �49�

ċ02�t� =
− ic11�t��2�N − 1�G�1 − y�t�2�e−it−i��t�

�N�1 + 	y�t�	2�
, �50�

ċ20�t� =
− ic11�t��2G�1 − y�t�*2�eit+i��t�

�1 + 	y�t�	2�
, �51�

ċ21�t� =
ic11�t�2�2G�y�t� + y�t�*�eit

�N�1 + 	y�t�	2�
, �52�

ċ22�t� =
− ic11�t�2�N − 1G�1 − y�t�2�eit−i��t�

�N�1 + 	y�t�	2�
. �53�

The coefficient A is just a normalization. We are now in a
position to show that the present perturbative series repro-
duces the result obtained in �18� and corrections to that re-
sult. For this purpose we consider the time evolution of ex-
pectation values of the form

�Ô
 = �	�t�,y�t�	Ô		�t�,y�t�
 , �54�

where we have a classical state given by the coherent state

		�t�,y�t�
 � D��Nx�t�� � D�y�t��	0
 � 	j,− j
 . �55�

Using first- and second-order semiclassical approxima-
tions, it is just a matter of straightforward calculation to de-
termine the mean of these intensive operators. We get, for ã
up to second order,

�	̃
�t� = x�t� +
1

A�N
�c11c01

* + c21c11
* �; �56�

for Jz̃ up to second order,

�J̃z
�t� =
1

2
�1 − 	y�t�	2

1 + 	y�t�	2

+

y�t���1 + c00�c01
* + c20c21

* � + �2�c01c02
* + c21c22

* �

A�N�1 + 	y�t�	2�

+ c.c.; �57�

for ã2,

�	̃2
�t� = x�t�2 +
1

AN
�2�c11c01

* + c21c11
* �

+ �2�c22c02
* + c21c01

* + c20�1 + c00�*��; �58�

for J̃z
2 the corrections already appear at first order,

�J̃z
2
�t� =

1

4
�1 − 	y�t�	2

1 + 	y�t�	2

2

+ � �1 − 	y�t�	2�2	c11	2 + 	y�t�	2�1 + 3	c11	2�
N�1 + 	c11	2��1 + 	y�t�	2�2 
;

�59�

and the interaction terms in the Hamiltonian of the model are
corrected as follows:
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FIG. 1. �Color online� Ratio R�t� defined in Eq. �61� for several
values of particle number N. �=1, G=0.2, x0=0.404 748, and y0

=−0.070 888 1. Time is in units of �−1; all other constants are
dimensionless.
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FIG. 2. �Color online� Ratio R�t� defined in Eq. �61� for several
values of particle number N. �=1, G=0.2, x0=0.070 710 7�1+ i�,
and y0=0.071 066 9�1+ i�. Time is in units of �−1; all other con-
stants are dimensionless.
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�ãJ̃+
 =
x�t�y*�t�

2�1 + 	y�t�	2�
+

x�t�
A�N

��1 + c00�c01
* + c20c21

*

+ �2�c01c02
* + c21c22

* � − y*�t��c01�1 + c00�* + c21c20
* �

− �2y*�t��c02c01
* + c22c21

* �� , �60�

with similar expressions for the other terms.

IV. RESULTS AND CONCLUSION

In the above equations, the coefficients cij have their tem-
poral dependence given by �48�–�53� and the variables x�t�
and y�t� obey the classical equations given by the Hamil-
tonian �36�. We recognize x�t� and �1− 	y�t�	2� / �2�1
+ 	y�t�	2�� as the means of the operators ã and Jz̃, respectively.
Moreover, the first term on the right-hand side of Eqs.
�56�–�60� agree with the result obtained by Hepp and Lieb
�Eq. �10� here�. These correction terms are the main result of
this contribution, and we readily see that they are of order
1 /�N or 1 /N.

Note that the coefficients cij�t� depend on both N and t,
although this is not explicit. One may now ask about the
adequacy of these correction terms, i.e., is there an N-t do-
main within which the corrections terms behave as such? A
way to answer the proposed question is to look at the size
and shape of the N-t domain where the correction terms are

small enough. We should keep in mind that this domain is
dependent on the initial coherent state. Since all coefficients,
except 1+c00, are related to semiclassical corrections, a sug-
gestive way to look for a classical regime would be through
the ratio

R�t� �
�	ckl�t�	

	1 + c00�t�	
. �61�

Perhaps the most interesting result is that for small values
of N, the quantum corrections show a strong dependence on
N �all other variables fixed�. However, as N grows, R�t� tends
to a “universal” curve which is independent of N, although it
still depends on the initial state. Also, for times such that t
��−1, the corrections do not depend on N.

Our findings are illustrated as follows. Figures 1 and 2
show the dependence of R�t� on the initial condition and also
the large-N behavior. Figures 3 and 4 exhibit the dependence
of R�t� on the coupling constant. Note that, since G=0.5
corresponds to the well-known phase transition coupling, the
validity of the expansion is limited to very small values of t.
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